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Abstract

OpenMP is a proposed industry standard Application Programmer Interface
(API) that supports shared-memory parallel programming in Fortran and C/C++
on architectures including Unix, Linux, and Windows NT platforms. This report
discusses experiences using OpenMP implementations on Shared Resource
Center (SRC) platforms. The experiences include running OpenMP benchmarks,
as well as using OpenMP with applications. Tools available for debugging and
analyzing OpenMP programs are also covered. Most of the results in this report
should be considered preliminary and the basis for further investigation.
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1. Introduction

OpenMP is a proposed industry standard Application Programmer Interface
(API) that supports shared-memory parallel programming in Fortran and C/C++
on architectures including Unix, Linux, and Windows NT platforms. Jointly
defined by a group of major computer hardware and software vendors who
make up the OpenMP Architecture Review Board (ARB), OpenMP is intended
to give shared-memory parallel programmers a portable, scalable programming
model and simple interface for developing parallel applications for platforms
ranging from the desktop to the Supercomputer. (See reference [1] for more
information about OpenMP.) OpenMP compilers used here include the
following:

e SGI MIPSPro 7.3.1.1 Fortran 77 and Fortran 90 compilers on an SGI Origin
2000 and an SGI Origin 3000 running IRIX 6.5;

 IBM XL 7.1 Fortran 77/90/95 compilers on an IBM Power3 SMP with eight
processors per node running AIX 4.3;

* Sun Forte 6 update 1 Fortran 95 on a Sun HPC10000 running Solaris 8; and

e KAI Guide 3.9 Fortran 77 and Fortran 90 compilers on SGI, IBM, and Sun
platforms.

2. Benchmark Results

The EPCC OpenMP microbenchmarks are intended to measure the overheads of
synchronization and loop scheduling in the OpenMP run-time library [2]. The
overhead measurements can be used to compare the efficiency of the run-time
libraries of different OpenMP implementations and give guidance on the
performance implications of choosing between semantically equivalent directives
(e.g., CRITICAL vs. ATOMIC vs. lock routines). Much of these benchmarks
address the barrier implementations in OpenMP. However, the overhead itself
may not be an indication of how well an individual OpenMP program will
perform. An application program will use a whole ensemble of directives, and its
performance cannot be predicted on the basis of certain directives alone.
However, these benchmarks are meant to give some guidance on choosing
directives to the application programmer and give indications to the vendors as
to where improvement in their OpenMP implementations may be needed. A
detailed explanation of the measurement methodology can be found in
reference [2]. A brief explanation is given in this report as follows. The overhead




of a parallel program is defined as Tp-Ts/p, where Tp is the parallel execution
time, Ts the serial execution time, and p is the processor count. The overheads of
a number of directives are measured in this simple fashion. Overheads are
reported in processor clock cycles to allow comparison between different
systems.

The loop scheduling benchmark measures overheads for STATIC, DYNAMIC,
and GUIDED schedules with different chunk sizes. Results for the Sun E10000,
SGI Origin 3000, and IBM Power3 SMP for both vendor and KAI Guide
compilers (where possible) are shown in Figures 1 through 5.  From these
figures, it can be seen that dynamic scheduling is expensive, especially for small
chunk sizes. Since the default chunk size is 1 for most OpenMP
implementations, users need to be careful to set the chunk size to a larger value
when using dynamic scheduling. On the Origin, the overheads of dynamic
scheduling are so large as to render it useless, at least with the default setup.

The synchronization benchmark measures synchronization overheads for several
barrier types of directives: parallel, for, parallel for, barrier, and single. The
overheads of each of the operations are measured for different numbers of
threads. Results for the Sun E10000, SGI Origin 3000, and IBM Power3 SMP for
both vendor and KAI Guide compilers (where possible) are shown in Figures 6
through 10.

The PBN, or “Programming Baseline for NPB,” consists of three sets of source
codes based on the NASA Advanced Super (NAS) Computing Division Parallel
Benchmark version 23. The PBN contains an improved sequential
implementation, a sample OpenMP implementation, and a sample HPF
implementation. The directives inserted for the OpenMP implementation reflect
a programmer’s parallelization and data distribution strategy, while the compiler
is responsible for implementation and optimization. These benchmarks
complement the EPCC benchmarks by providing application-oriented
performance measures. Each application in the benchmark has three problem
sizes, which are simply called A, B, and C, where C is the largest problem. We
looked at the Mflop rate for each problem set as a function of the number of
processors. The OpenMP version of the PBN benchmarks has been rewritten by
the Real World Computing Program (RWCP)/Omni group in Japan to eliminate
some problems. We have not been able to run all size C problems on all of the
platforms due to memory limitations and occasional segmentation faults. We
will follow up on these problems. Some preliminary results for the Origin 3000
are shown in Figures 11 through 14. These are with STATIC scheduling and the
default chunk size. The OpenMP versions of most of the benchmarks appear to
scale well for larger problem sizes, although the results shown here are
somewhat noisy. We plan to rerun these benchmarks to try to achieve more
reliable results and to compare scaling with the (message-passing interface)
versions.




3. Lessons Learned

OpenMP private variables are allocated on a thread’s stack. The default
stack size may not be large enough for parallel regions with large numbers
of private variables or regions that call subroutines with large numbers of
local variables which are automatically private. Segmentation faults are a
frequent consequence of using a stack size that is too small. Both
environment variables and run-time routines may be used to modify the
default stack size, although the manner in which this is done is
implementation dependent. On the Origin 3000 with the MIPSpro
compiler, setting the MP_STACK_OVERFLOW environment variable
causes the OpenMP run-time system to automatically detect and report
stack overflow errors at run-time. The MP_SLAVE_STACKSIZE variable
or the MP_SET_SLAVE_STACKSIZE library routine can be used to request
larger stack sizes. Similar facilities are available with some other OpenMP
compilers (e.g., KMP_STACKSIZE with Guide).

Hewlet-Packard currently does not support OpenMP for C. Its support of
OpenMP for Fortran is incomplete and less than perfect. In particular, its
error messages are extremely poor and generally only state that an internal
error has occurred. This behavior insinuates that the compiler is broken
when, in fact, it could be a bug in the application code.

Two examples of these problems are the following:

(1) HP Fortran 77 and Fortran 90 support a limited number of continuation
lines. Since the limitation applies to compiler directives as well, a
problem can arise if there are a large number of private variables.
Unfortunately, rather than stating what the problem is, the compiler
just gives the internal error message.

(2) The compiler did not seem to work well with code generated by a KAI
tool that converted SGI directives to OpenMP. When it was specified
that variables should default to SHARED, matters improved. Most of
the error messages disappeared, and the job seemed to run correctly.

On IBM systems, there is a problem that if an OpenMP job tries to use all of
the processors, then it is competing with the operating system for the
attention of a processor. OpenMP jobs tend to be relatively fine-grained;
thus, if the operating system needs 5% of a processor’s attention, then the
other processors will spend 5% of their time spinning while waiting for the
last thread to catch up. Obviously, the problem gets worse as the number
of processors in the system increases because the number of processors
sitting at a spin lock increases, while the amount of time required by the




operating system can also increase. On the IBM SP, problems are even
worse, such as the following:

(1) When performing mixed-mode programming with MPI going between
nodes, servicing MPI requests from other processors will also require
the attention of a processor, slowing things down even more.

(2) Asynchronous transfer of data between nodes can also put a strain on
the memory system, which, in the case of some configurations, is
already stretched fairly thin.

KAI’s implementation of OpenMP is based on Pthreads. As such, it should
add extra overhead relative to a native implementation. However, our
benchmark results so far do not show this to be a problem, and sometimes
the KAI compiler outperforms the vendor compiler.

4. Tools for OpenMP

The TotalView debugger from Etnus provides facilities for debugging OpenMP
programs as well as for mixed MPI and OpenMP programs [3]. TotalView is
available for a large number of platforms and is installed on some
Shared Resource Center (SRC) machines. The previous version (4.1) had some
problems debugging threaded programs (such as OpenMP) on some platforms
(such as SGI), but this problem appears to have been fixed in version 5.
TotalView works with both vendor and KAI OpenMP compilers.

The KAI KAPPro toolset includes the Guide compiler, the Assure debugger, and

the GuideView performance analysis tool for OpenMP, which are described as
follows:

Guide is a cross-platform implementation of OpenMP for C, C++, and
Fortran.

The Assure component of the KAP/Pro toolset validates the correctness of
parallel OpenMP programs and identifies programming errors that
occurred when parallelizing a sequential application. The inputs to Assure
are an OpenMP parallel program that is assumed to run correctly in
sequential mode and a data set for that program. When the Assure-
processed program is run, Assure simulates parallel execution and
identifies errors where the parallel program is inconsistent with the
corresponding sequential program. Assure can display its results using the
AssureView graphical user interface or a command-line interface.

* The GuideView component provides an instrumented run-time library that

captures timing information for detecting and diagnosing performance




problems in OpenMP parallel programs. The graphical interface provides
browsing through performance data to identify parallel regions or loops
that require attention.

Performance Application Programming Interface (PAPI) is a specification and
reference implementation of a cross-platform library interface to hardware
counters [4, 5]. These counters exist as a small set of registers that count
“events,” which are occurrences of specific signals, and states related to the
processor’s function. Monitoring these events facilitates correlation between the
structure of source/object code and the efficiency of the mapping of that code to
the underlying architecture. This correlation has a variety of uses in performance
analysis and tuning. PAPI virtualizes the counters on a per-process and per--
thread basis and can be used for analysis of threaded programs including
OpenMP. PAPI is being installed on some SRC machines.

Vampir is a performance analysis tool for MPI parallel programs developed by
Pallas in Germany. Vampir is available on some SRC machines. The next
version of VAMPIR will support OpenMP in addition to MPL. Pallas and
Intel/KALI are developing a new performance analysis toolset for combined MPI
and OpenMP programming which uses PAPI to access the hardware
performance counters. PAPI's standard performance metrics, which include
metrics for shared memory processors (SMPs), will provide accurate and
relevant performance data for the clustered SMP environments targeted by the
new tool set.

5. Conclusions and Future Work

OpenMP implementations have matured and will continue to do so.
Implementations of OpenMP 2.0 for Fortran will hopefully begin to appear soon.
OpenMP is becoming a viable option for scalable parallel programming on
shared-memory platforms. We plan to continue our benchmarking work and
will investigate possible solutions to performance problems encountered on
various platforms.

For example, when using the C$doacross directives on SGI, sometimes the
optimal solution is to specify INTERLEAVE, which is equivalent to STATIC
scheduling with a CHUNK SIZE of 1. Alternatively, sometimes the optimal
solution will be to specify STATIC and let the CHUNK SIZE default. In this case,
the default is not 1, rather it is the largest CHUNK SIZE that will result in a
uniform distribution of work among the processors (within the limitations of
integer division). We plan to investigate use of this optimization with the EPCC
scheduling benchmark.
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Figure 1. Scheduling overheads on an SGI Origin 3000 with the vendor compiler.
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Figure 2. Scheduling overheads on an SGI Origin 3000 with the Guide compiler.




10000000
’@ 1000000 - -
% 100000 &2 'A"Th
.§ 10000 -——*ﬁ%— T staticn
3 ‘ —#— dynamic,n
R 1000 B
Q
g 100
) 10

1 T ! ' ' ‘ I

Overhead (clock cycles)

Sun E10000, 400 MHz, Sun Forte f95, 8 threads

1

2

4

8 16 32 64 128

Chunk size

Figure 3. Scheduling overheads on a Sun E10000 with the vendor compiler.

Sun E10000, 400 MHz, Guide 3.9 (guidef90),

1000000 -

8 threads

100000

10000

=0 W | |—¢—static,n

1000

= dynamic,n
--4-- guided,n

100

10

1

1

2

4

8§ 16 32 64 128

Chunk size

Figure 4. Scheduling overheads on a Sun E10000 with the Guide compiler.




IBM Power3 SMP, 375 MHz, x1f90_r, 4 threads
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Figure 5. Scheduling overheads on an IBM Power3 SMP with the vendor compiler.
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SGI Origin 3000, 400 MHz, Guide 3.9 (guidef90)
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Figure 7. Synchronization overheads on an SGI Origin 3000 with the Guide compiler.
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Sun E10000, 400 MHz, Guide 3.9 (guide f90)
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Figure 9. Synchronization overheads on a Sun E10000 with the Guide compiler.
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SGI Origin 3000, 400 MHz, MIPSpro f77
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Figure 11. PBN BT benchmark on an SGI Origin 3000 with the vendor compiler.
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